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Chaotic dynamics in classicals-wave helium
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Department of Astronomy and Applied Physics, Center of Nonlinear Science, University of Science and Technology of Chi

Hefei, Anhui 230026, China
~Received 10 December 1998!

Classical dynamics ofs-wave helium in the case ofE,0 is investigated by the geometric method. The
ambiguousness of the orbits after two-electron critical collision~TECC! is eliminated by confining the motion
to the fundamental domain defined byr 1.r 2. Scattering orbits are classified into undelayed and delayed
~resonant! according to whether they can avoid the recurrence of reaction. A global Smale horseshoe on the
surface of section is constructed for the case ofZ52 which implies that the bounded motion is purely chaotic
and explains the onset of the chaotic~resonant! scattering when the incident energy is below a threshold.
Immediately below the threshold, the probability of resonant scattering increases linearly with the energy
difference. Moreover, we found that the permitted code sequences for the scattering orbits at a given incident
energy are determined by the principal TECC orbit. Compared with thee2Ze2 collinear helium, thes-wave
helium is less chaotic and exhibits a more intricate threshold behavior.@S1063-651X~99!06509-5#

PACS number~s!: 05.45.2a, 45.05.1x
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I. INTRODUCTION

As one of the most important examples of a nonintegra
Hamiltonian system as well as a semiclassical approac
the strongly correlated motion in two-electron atoms or io
the classical dynamics of three-body Coulomb system
been attracting increasing attention in recent ye
@1–14,17#. However, being complicated by its multidimen
sional, nonseparable and nonperturbative nature, the pro
still remains a challenge for physicists@5#. Thus far, severa
simplified models have been proposed, among them,
s-wave helium, where the two electrons are restricted
spherical states with individual angular momentum equa
zero, is one of the most physically transparent models. In
model, it is found that the bounded motion is purely chao
while almost all initial points will lead to the escape of on
electron, i.e., autoionization, and the lifetime distribution
duces a fractal structure on phase space@12#, which are very
similar to the phenomena observed in the numerical stu
on the coplanar three-body Coulomb systems@8,9#. In addi-
tion, quantum calculations of bounded as well as scatte
states based on this model have also yielded reasonabl
sults @15,16#. All these facts give hope that the essent
physics of the original system is well preserved in this si
plified model.

Despite the many important and interesting phenom
discovered in the classicals-wave helium, a direct account o
the global dynamics of this system, especially its depende
upon the nuclear charge numberZ, is still lacking. In this
paper we shall investigate thes-wave Coulomb three-body
system by geometrical methods so as to understand a
important global properties. In order to eliminate the disco
tinuity at two-electron critical collisions, we take advanta
of the electron exchange symmetry of the system and s
its motion in the fundamental domain. Then there come
category of criticale-e collision orbits which are crucial to
the understanding of the qualitative dynamics of the syst
Special attention is also paid to the critical escape and c
cal injection orbits, which play an important role in the u
PRE 601063-651X/99/60~4!/3866~10!/$15.00
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bounded many-body systems@17,18#.
The paper is organized in the following way: We intr

duce in the next section the motion ofs-wave helium in the
fundamental domain and a code system which is appropr
for a symbolic description of the orbits. In Sec. III, we giv
a comprehensive account of the global behaviors in the c
of E,0, which includes the Smale horseshoe and the
companying symbolic dynamics, the tilling of the surface
section~SOS! by the escape and injection regions and t
classification of scattering orbits. This is followed by a ge
eral discussion and a brief summary.

II. PRELIMINARY

A. Critical collision between electrons

In the s-wave model, a two-electron atom or ion is d
scribed as two spherical shells of charge21 expanding and
contracting around a fixed nucleus of chargeZ. The Hamil-
tonian of this model in atomic units can be written as@12#

H5
1

2
~p1

21p2
2!2

Z

r ,
2

Z21

r .
,

wherer ,5min$r1,r2% andr .5max$r1,r2% with r i>0 andpi
being coordinate and momentum ofi th electron (i 51,2). As
compared with other restricted helium models, thes-wave
model exhibits the simplest dynamics in the sense that
two electrons are actually uncoupled between their two c
secutive encounters, so that the energy of each electron,
E15 1

2 p1
22(Z21)/r 1 , E25 1

2 p2
22Z/r 2 if r 1.r 2 or E1

5 1
2 p1

22Z/r 1 , E25 1
2 p2

22(Z21)/r 2 if r 2.r 1, keeps, for the
most time, constant. Thee-e interaction takes place when th
two electrons collide atr 15r 25r, where the energy could
be transferred between the two electrons. As a result, o
the total energyE5E11E2 is a global constant of motion
Furthermore, the homogeneous potential implies a sca
symmetry~similarity principle!, by which we can scaleE to
21 as we consider only the case of negative total energ
this paper@19#.
3866 © 1999 The American Physical Society
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An e-e collision can be labeled by (p1 ,p2), the momen-
tums of the two electrons immediately before it occurs
alternatively, by (P1 ,P2)[(Arp1 ,Arp2) for convenience.
Then all events ofe-e collision are represented in th
(P1 ,P2) plane by an open disk defined by the energy re
tion P1

21P2
252(2Z212r),2(2Z21). Among these col-

lisions, there exists a special category characterized byP1
5P25Pc , each of them we call a two-electron critical co
lision ~TECC!.

The motion at a TECC is not continuous, i.e., starti
immediately before it withr 15r 210 and p15p270 will
thereafter lead to two orbits which are symmetric with
spect to the line ofr 15r 2 ~see Fig. 1!. However, if we take
advantage of the electron exchange symmetry and study
motion in the fundamental domain~FD! defined byr 1.r 2
@4#, this ambiguity can be eliminated. By setting an elas
cally reflection wall atr 15r 2 , e1(e2) will always be the
outer~inner! electron and an orbit can be unambiguously co
tinued after a TECC.

Note that the symmetric motion of the electron pair on
Wannier ridge (r 15r 2) is excluded from the dynamics. Th
reason is that the Wannier orbit~if it exists in s-wave helium!
is isolated on the steep ridge and cannot be approached b
nearby orbits. Instead of the Wannier orbit, we have a c
egory of TECC orbits, which play an important role in u
derstanding the qualitative behavior of thes-wave model as
it will be shown latter.

B. Surface of section and the symbolic description of orbits

By using the Poincare´ section method, the dynamics
reduced to a two-dimensional mapping. The surface of s
tion can be set atr 250, i.e., at the collision between th
inner electron and the nucleus. To eliminate the diverge
of p1 when r 1→0, the coordinates (R,P)5(Ar 1,Ar 1p1) on
SOS are used, in terms of which the mapping is area pres
ing.

A symbolic method can be used to give a qualitative
scription of the dynamics. Since an arbitrary orbit, bound
as well as unbounded, will cross SOS for infinitely ma
times, each orbit can be divided into infinitely many se

FIG. 1. Two orbits which pass near a TECC. They are symm
ric with respect to the Wannier ridger 15r 2 ~dashed line! after
approaching the TECC.
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ments by the points of intersection. As between two conse
tive crossings of SOS, an orbit can attain the ridge of
potential atr 15r 2 ~i.e., lead to ane-e collision! at most
once, we assign a code2 or 1 to the segment when there
an or noe-e collision. Besides these two general cases,
give a c ~which can be regarded as the degenerated2 and
1) to the critical situation when a TECC occurs. In th
extended binary code system, an orbit is represented b
bi-infinite symbolic sequence made up from the codes of
sequential segments

•••s22s21s0s1•••,

wheres iP$1,2,c%, i PZ. We add a • to this sequence, i.e

•••s22s21•s0s1•••,

to mark the present point of this orbit on SOS. Then t
action of the Poincare´ mappingF ~or F21) manifests itself as
a right-shift ~or left-shift! of • in the corresponding code
sequence. Moreover, we denoteU(S) the region on SOS
where all the points share a common segment of symb
sequenceS ~with •).

III. GLOBAL DYNAMICS

A. General consideration

It is found that the motion in the case ofE>0 is qualita-
tively simple. All the orbits are initiated from one or tw
electron~s! injection and terminated at the ionization of on
or both electron~s! after a brief time of coupled motion
which we call a reaction, near the nucleus@13#. In the case of
E,0, however, the recurrence of reaction may occur a
consequently, the system will exhibit a more complicat
dynamics.

Consider an injecting orbit initiated withE15E1
0.0, p1

,0, andE25E2
0,2E1

0. The reaction begins att5t0 when
e1 first collidese2 at r 15r 25r where we havep1<p2. If
p2,0, then both electrons will move inwards until the inn
one collides with the nucleus and turns back, which will le
to an additionale-e collision at r 15r 25r8 with r8,r.
Then we haveE15E1

011/r821/r.E1
0 andp1.up2u, which

enables the outer electron immediately escape to the infin
In other words, an initial head-to-taile-e collision will al-
ways result in a direct scattering@as we consider the motion
in FD, direct~exchange! scattering actually means a scatte
ing with even~odd! e-e collisions# and the outgoing energy i
always greater than the incident energy. Moreover, sim
calculations show that the firste-e collision always happens
at r 15r 25r>rc151/(E1

02E2
0), and we shall have a TECC

@i.e., p1(t0)5p2(t0)] if and only if r5rc1.
If p2(t0).0, however, the outcome is more comple

From the viewpoint of continuity, ife2 is sufficiently near to
its return point att0, i.e., r'Z/uE2

0u, the orbit will also lead
to direct scattering. On the other hand, ifr is too small and
the momentum transferred between the two electrons is
ficiently large, the outer electron will be directly knocked o
after the firste-e collision and an exchange scattering w
occur. We denote the two regions which immediately lead
direct and exchange scatterings byr>rc2 and r<rc3, re-
spectively. In Sec. III G, we shall show thatrc25rc3 if « i

t-



th
s
ow

it
i
n

ic

s
e.

re
an

a
di
n

ica

on
e

-
e

lli
ze

s

try
um

o
t of

t
h
l

y
by

er
e-
e

dary

b-

in

3868 PRE 60ZAI-QIAO BAI AND YAN GU
5uE1
0/E2

0u>«ic ('0.809417 for Z52) and for such initial
conditions all the orbits will be ended in the escape of
outer electron after the first reaction and the scattering i
regular as that in the case of non-negative total energy. H
ever, if « i,« ic , rc3 will be less thanrc2 and whenr
P(rc3 ,rc2), the outer electron cannot escape to the infin
(E1,0) after the first reaction and an additional reaction
inevitable due to the reinjection of the outgoing electro
Actually, the iteration of this process will result in chaot
scattering.

Based on the above discussion, the unbounded orbit
the case ofE,0 can be categorized into two classes, i.
undelayed~or fast! and delayed~or resonant! scatterings ac-
cording whether or not they can avoid the recurrence of
action. In the former class, there are undelayed direct
exchange scatterings which are coded by1`221` and
1`21`, respectively. While for the latter class, it has
great diversity of permitted code sequences, correspon
to a multitude of possible patterns for the resonant motio

B. Symbolic sequences for TECC orbits

All TECC’s can be naturally parametrized byP15P2

5Pc5sA2Z21 with sP(21,1). Consider an orbit having
TECC with labels. If s>s0[A(2Z22)/(2Z21), then after
this collision we havep15p2.0 and E1>0 and e1 will
immediately escape to the infinity. In addition,s5s0 implies
that the energy of the outgoing electron is zero, i.e. a crit
escape will occur. On the other hand, ifs<2s0, discussion
on the head-to-tail collision in the beginning of this secti
told us that after such TECC, the outer electron will imm
diately escape after an additionale-e collision. Since a head
to-tail collision with negativeE1

0 may also lead to the sam
result, we can find a larger interval (21,s1).(21,2s0) for
the TECC orbits which will escape after one more e-e co
sion and the energy of the escaping electron becomes
when s5s1. Numerical study shows thats1.0 for Z52
while for the integersZ.2, we haves1,0 ~Fig. 2!. As it
can be seen later, the sign ofs1 is crucial to the global
dynamics of thes-wave model Coulomb three-body system
and we shall consider only the caseZ52 in the following
discussion. By making use of the time reversal symme
the symbolic sequences for the TECC orbits could be s
marized as follows;

1`2c1` for sP@s0,1!,

1`2cS, sP~s1 ,s0!,

1`2c21`, sP@2s1 ,s1#,

FIG. 2. The dependence ofs1 upon the charge numberZ.
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Sc21`, sP~2s0 ,2s1!,

1`c21`, sP~21,2s0#,

where S represents a sequence different from1` and
21`. As a result, if an orbit experiences at least tw
TECC’s, i.e., its code sequence contains a segmen
cS8c (S8 contains only1 and2), then the former TECC
must occur atsP(s1 ,s0) ~outgoing wave! while the latter at
sP(2s0 ,2s1) ~incoming wave! and its full sequence mus
be1`2cS8c21`, i.e., it is a resonant scattering orbit wit
only two TECC’s. We shall call such an orbit a bicritica
collision orbit ~BCCO!.

C. Partition lines induced by TECC orbits

The TECC orbits will intersect with SOS infinitely man
times. We shall denote their first intersection after TECC
U(1) and their last intersection before TECC byS(1). The
points onU(1) andS(1) can be labeled by the paramet
sP(21,1) for the corresponding TECC’s and will be d
noted asU(1,s) and S(1,s), which are connected by th
Poincare´ mapping, i.e.,

F:S~1,s!→U~1,s!, sP~21,1!.

While the symmetry of time reversal implies

S~1,s!5@U~1,2s!#* ,

where the asterisk denotes the reflection (R,P)* [(R,2P).
S(1) and U(1) for Z52 are shown in Fig. 3~a!, from

which we can see that both their ends approach the boun
R50, i.e.,

lim
s→1

S~1,s!5~0,P8!, lim
s→1

U~1,s!5~0,P9!,

and the time reversal

lim
s→21

S~1,s!5~0,2P9!, lim
s→21

U~1,s!5~0,2P8!.

Moreover, it can be proved that~see the Appendix!

A2~Z21!,P8,A2Z21,P9,2A2Z211A2Z.

By using the symbols introduced in Sec. II, we have o
viously U(1)5U(c•) and S(1)5U(•c). As c marks the
critical state in the transition between1 and2 in the sym-
bolic description of orbits, we can see that bothS(1) and
U(1) are partition lines on SOS. The region confined with
S(1) is U(•2) while that outsideS(1) is U(•1). U(•2) is
bounded and its measure is (2Z21)p, which is proportional
to the flux of orbits that hit the reflection wall atr 15r 2 and
can be calculated from the Stokes’ lemma, whileU(•1) is
unbounded. Similarly,U(1) divides SOS intoU(2•) and
U(1•).

The Poincare´ mapping is continuous atS(1), i.e., if point
Xi approaches a given pointS(1,s), then Xf5F(Xi) will
tend toU(1,s). Furthermore, ifXiPU(•1), as the orbit con-
nectingXi andXf changes smoothly, the tangent map~Jaco-
bian! is also well defined. However, ifXiPU(•2), the cor-
responding orbit will lead a reflection atr 15r 2, which will
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generally cause a variation of orbit to the order ofd1/2 if the
deviation ofXi from S(1,s) is of orderd. Hence the Jacobian
will generally be singular onS(1). This singularity due to
the sudden appearance of reflection explains the folding
smooth curve that cutsS(1) @or U(1)] when mapped byF
~or F21) as we shall frequently see in the following studie

FIG. 3. ~a! The partition linesS(1) andU(1) ~dotted lines!. ~b!
The resonant zone boundaries~solid lines! E1 , E(0) @from
U(1,s0) to S(1,s0)], and E(21) @S(1,s0) to S(2,s0)], and their
time reversal~dashed lines! I 2 , I (0) @S(1,2s0) to U(1,2s0)]
and I (1) @U(1,2s0) to U(2,2s0)]. ~c! The resonant zoneD
5DIøDoøDB .
a

.

For example, the critical escape lineE(0)øE1 crosses
U(1) at point U(1,s0) while F21

†E(0)øE1‡

5E(21)øE(0)øE1 shows a cusp at pointS(1,s0) @see
Fig. 3~b!#.

D. Resonant zone on SOS

The resonant zone, denote it byD, can be so defined on
SOS that a scattering orbit is a resonant one if and only
intersects with SOS withinD at least one time. In order to
show this zone explicitly, we introduce another set of pa
tion lines related to critical escape and injection.

Consider the region on SOS where the outer electron
immediately escape to infinity, i.e.,U(•1`). Note that the
conditions thatp1.0 andE1>0 cannot ensure the immed
ate escape ofe1, i.e., whenr 1 is too small,e2 will move
faster thane1 and may catch up with it despiteE2,0<E1.
Therefore, in this region,E1 should be greater than a positiv
threshold so as to prevent the unwanted encounter withe2.
The lower boundary ofU(•1`) can be determined as fol
lows. In the region whereR is sufficiently large, the bound
ary is the horizontal line ofP5A2(Z21), whereE150 and
p1.0. This straight boundary can be extended to the smaR
region until it crossesU(1) at U(1,s0) and ends atS(1,s0)
on S(1). ThenS(1,s) with sP(s0,1) forms another piece o
lower boundary ofU(•1`) whereR is so small that a posi-
tive threshold for escape energy exists@Fig. 3~b!#. We denote
the lower boundary ofU(•1`) outsideU(1) by E1 and that
betweenU(1,s0) and S(1,s0) by E(0). E(0) forms one
piece of lower boundary forU(2•1`), which is the part of
U(•1`) confined withinU(1). Obviously, each escape orb
must crossU(2•1`) once and only once, which can then b
looked at as the representatives for all escape orbits.

DenoteF21@E(0)# by E(21) @see Fig. 3~b!# which has
two endpointsS(1,s0) andS(2,s0)5F21@S(1,s0)# and rep-
resents a piece of the boundary ofU(•21`)5F21@U(2•
1`)#. Discussion on the TECC orbits told us thatS(1,s) for
sP@2s1,1) share a common backward sequence1`2•.
Noting thats0.2s1, we have

S~1,s0!PU~1`2• !,U~2• ! and

S~2,s0!PU~1`•2 !,U~1• !.

Therefore, the location of the two endpoints implies th
E(21) must crossU(1). Thepoint of intersection must be
U(1,s1), as it corresponds to the orbit that has a TECC a
leads to critical escape after an additionale-e collision.

By acting the time reversal operation (P→2P), E1 ,
E(0), andE(21) are converted toI 2 , I (0), andI (1) re-
spectively @Fig. 3~b!#. The critical injection lineI 2øI (0)
forms the upper boundary of the injecting regionU(1`•)
with P52A2(Z21). I (1)5F@ I (0)# is a piece of the
boundary forU(1`2•). The two end points ofI (0) are
S(1,2s0) and U(1,2s0). SinceS(2,s0)PU(1`•2) is be-
low I (0) and2s0,s1 implies thatU(1,s1) is aboveI (0),
I (0) must crossE(21). The crossing point corresponds
an orbit which begins with zero energy injection and ends
critical escape after onee-e collision, where we must have
r 15r 251 and p252p15A2(Z21). Consequently, the
point is unique and in Fig. 3~c! it is denoted byA. SinceI (1)
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has its lower end pointU(1,2s0) and the upper end poin
U(2,2s0)5F@U(1,2s0)#PU(2•1`), it in turn crosses
E(21) at pointB ~located atP50 and numerically found
unique!, S(1) at point S(1,2s1) and E(0) at point A*
5F(A) @Fig. 3~c!#.

Based on the above discussion, the resonant zoneD on
SOS can be defined as the complement of

U~•1`!øU~1`• !øU~1`2•21`!,

whereU(1`2•21`)5U(•21`)ùU(1`2•). It is a sym-
metric region with respect toP50 confined by the critical
escape and injection curves. The upper boundary
E1øE(0) while the upper left one is part ofE(21) from
S(1,s0) to the pointB. The boundary can be completed b
adding the time reversal of the former two, i.e.,I 2øI (0)
and a part ofI (1) from U(1,2s0) to point B. We further
divide D into three parts, i.e.,D5DIøDBøDO with DI
5DùU(1`2•), DO5DùU(•21`), and what remained
is denoted byDB . DI is a trianglelike region. Its three edge
areE(0) from pointA* to S(1,s0), E(21) from S(1,s0) to
point B, and a segment ofI (1) from point B to point A* ,
respectively@Fig. 3~c!#. DO is the time reversal ofDI . For a
delayed scattering orbit, its symbolic sequence must be1`

2S21`, whereS is a finite string of lengthk which de-
scribes its resonant motion. Then the orbit will consecutiv
crossD at k11 points, the first and last of them are co
tained inDI andDO respectively while all the middlek21
points are located withinDB . In this meaning, we say tha
DI is the entrance whileDO is the exit of the resonant zon
D. In addition, for a bounded orbit, all the points of interse
tion must be confined withinDB .

E. Horseshoe and partition of SOS

We are now ready to show the Smale horseshoe struc
in the dynamics. To demonstrate the deformation ofDB un-
der the action ofF21, we fill DIøDB with many fibers and
see how they are changed by the map@Fig. 4~a!#. Each of
these fibers satisfies that,~i! its one end is located at th
lower boundary ofDB while another, for simplicity, is
S(1,s0) so that it must crossU(1) and~ii ! the point of in-
tersection is unique, which must beU(1,s), sP@s1 ,s0#. In a
topologically deformed diagram ofDIøDB shown in Fig.
5~a!, all those fibers as well asS(1) vertically crossDB
while U(1) horizontally cuts all the fibers. Under the actio
of F21, the points of intersection withU(1) are now mapped
to S(1,s), sP@s1 ,s0), which can be regarded as the upp
endpoints for the fibers of next generation@Fig. 5~c!#. In the
meantime the upper endpoints of the primary fibers m
into U(1`•2) @e.g., the pointS(1,s0) is mapped toS(2,s0),
see Fig. 4~b!#, leading the fibers crossI (0) and their points
of intersection become the lower endpoints for the new
bers. Finally, the lower ends located at the lower boundar
DB @i.e., I (0)øI 2] remain on it and they move rightwar
into I 2 to make room for the newcomers@e.g., point A
moves to pointA8, see Fig. 4~b!#. Note here that the fac
s1>0 is crucial to guarantee all the new-generated fib
crossingDB @see Fig. 5~d!#. Therefore, mapped byF21, one
is

y

-

re

r

e

-
f

s

piece of fiber is split into two, which manifest the stretchin
and folding ofDB . In fact, it is topologically a smale horse
shoe~Fig. 5!.

For each piece of new generated fiber, we do not kn
whether or not it crossesU(1) also at only one point. How-
ever, our numerical study shows that it is true for the sequ
tial series of fibers generated from the primary fiberS(1,s),
sP@2s0 ,s0# by repeating the inverse Poincare´ mapping
F21. The fibers of thekth generation are actually segmen
of S(k)5F2k11@S(1)#(k>1) included within DIøDB .
Each segment ofS(k), e.g.,U(•Sc), crossesU(1) only at
one point, by which it is divided into two partsU(2•Sc)
@inside U(1)] and U(1•Sc) @outside U(1)]. These two
parts are mapped byF21 to U(•2Sc) andU(•1Sc), then
become two pieces ofS(k11). Therefore,S(k) is made up
from 2k21 pieces, i.e.,U(•Sc) with S exhaust all binary
~contains only1 and2) sequences of lengthk21 and each
of them cutsU(1) and yields a BCCO with code sequen
1`2cSc21`. Moreover, by the 2k21 pieces of partition
lines S(k8), 1<k8<k, 2k cells is determined on SOS. Asc
can be regarded as the degenerated1 and2, the two cells
on the both sides of the partition lineU(•Sc) areU(•S1)
andU(•S2), respectively. Therefore,U(•S)Þf for an ar-
bitrary binary sequenceS of lengthk, or the binary symbolic
dynamics is complete.

FIG. 4. The deformation of the fibers inDB under the action of
F21. Three representative fibers,E(21) from S(1,s0) to point A,
S(1) from S(1,s0) to S(1,2s0) and E1øE(0), which can be
looked as meetI 2 at infinity ~point G), as well as two other fibers
between them are shown in~a!. Images of these five fibers mappe
by F21 are shown in~b!. The shadowed area isF21(DO).
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As each piece of partition line crossesU(1) once and
only once, we can give a natural order to the symbolic
quences such thatS1,S2 if and only if U(•S1) crosses
U(1) at smallers than that ofU(•S2), whereS1 andS2 are
two arbitrary admissible sequences. The coarsest partitio
SOS gives2,c,1. From the forgoing discussion on th
deformation ofS(k) under the inverse Poincare´ mapping, we
know that adding a1 to a sequence will result in the stretc
ing of the corresponding region while adding a2 will lead
to an additional folding, so1 will preserve the order while
2 will reverse it, i.e.,

S1,S2⇒1S1,1S2 and 2S1.2S2 ,

which is the same as that in the one-dimensional unimo
map. Moreover, the well defined order for the complete
of symbolic sequences implies that the bounded motion
DB is homeomorphic to the two-dimensional Baker’s tran
formation.

F. Tilling of resonant zone by autoionization regions

We have seen that all BCCO’s are scattering orbits. A
tually, almost all initially bounded (E1 ,E2,0) motion will
end in autoionization and it has been pointed out in Ref.@12#
that the lifetime of the resonant motion imposes a frac
structure on phase space, leaving a cantor set for the~totally!
bounded trajectories. Geometrically, this fact can be und
stood as the tilling of the resonant zone by the autoioniza
regionsF2k(DO),k.0.

FIG. 5. Schematic diagram showing the horseshoe.~a! DB ~the
rectangleABA* G) and five vertical fibers in it. PointG represents
the edge ofDB at infinity. ~b! Stretching.~c! Folding whens1.0,
the shadowed area isF21(DO). ~d! Folding whens1,0.
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Consider the regionF21(DO) @shadowed area in Fig
4~b!#. It is an autoionization region, in which the code s
quences for the escape orbits are •s21`, s51,2,c. Its
upper end isS(1,s1) while the lower end is a line segmen
from B85F21(B)PI (0) to A85F21(A)PI 2 , which be-
longs to the lower boundary ofDB . Therefore, this striplike
autoionization region, which contains the partition lin
S(1,s), sP@2s0 ,s1), ‘‘vertically’’ crossesDB and, as a re-
sult, will also be subjected to stretching and folding und
the action ofF21, just like the reduplication of the partition
lines. Therefore, withinDBøDI , the partition lineU(•Sc) is
enclosed by an autoionization region in which the sequen
for the escape orbits are •Ss21`, s51,2,c. Moreover,
orbits start from both two edges of those striplike regio
will lead to critical escape.

The completeness of symbolic dynamics indicates t
there exist a great diversity of escaping patterns in the re
nant zone. In fact, if we view the transformation of the
autoionization regions in a time reversal version by mak
use of the reflectionP→2P, we will obtain a picture of the
evolution ofDI ~which can be regarded as the ensemble
the resonant scattering orbits!, i.e., endless stretching an
folding under the action ofF while part of its orbits fall into
DO and escape away. When we take all those infinitely ma
striplike autoionization regions together with their time r
versal ~i.e., the resonant injection regions! away fromDB ,
the remaining set forms a fractal basin which gives
bounded motion.

G. Scattering orbits

A scattering orbit can be initiated as follows. The inn
electron (e2) is oscillating near the nucleus with fixed neg
tive energyE2

0 while the outer electron (e1) is injecting from
a sufficiently far distance with positive energyE1

0521
2E2

0. As the two electrons are uncoupled before their fi
encounter, we can simply fixe1 at a distance out of the
amplitude ofe2 and scan the phase ofe2 so as to overview
all scattering orbits for a given incident energy. The scatt
ing functions are defined as the dependence of the final q
tities, such as the final escape energy or the time of sca
ing, upon the initial state parameter, i.e., the phase ofe2.

Immediately before the first e-e collision, the incident o
bits must cross SOS within the regionU(1`•2) and these
representative points can be looked as the injection
semble. Since the scaling symmetry of Coulomb systems
plies that the behavior of scattering orbits at an arbitr
negative total energy depends only on the scaled incid
energy« i[E1

0/uE2
0uP(0,1), it is convenient to organize th

points in the injection ensemble into incident curves acco
ing to different« i and denote each incident curve by

I ~« i ,0!5H ~R,P!PU~1`•2 !UP
52F2S Z211

« i

12« i
R2D G1/2J .

When « i→0, I (« i ,0) will approachI (0), thecritical injec-
tion line. With the increase of« i , I (« i ,0) moves leftward
and tends to the boundaryR50 when« i→1 ~Fig. 6!.
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After one more crossing of SOS, the injection ensem
arrives U(1`2•) which are filled with incident curves
I (« i ,1)5F@ I (« i ,0)#. By the partition lineS(1,s)(s.s0) and
the critical escape curvesE(0) andE(21) @from point A*
to S(1,s0) then to pointB], U(1`2•) is divided into three
parts. The uppermost one is its intersection withU(2•1`)
where the orbits will end in undelayed exchange scatte
with code sequence1`21` while the lowermost one is
confined withinU(•21`) where the orbits will give direct
scattering coded by1`221`. The middle part isDI , with
the cusp atS(1,s0) delimited byE(0) andE(21), where the
orbits will start their resonant motion. Note that not all inc
dent curves can intersect withDI . If « i is too large, the curve
will cut S(1) atS(1,s) with s.s0 and not crossDI . Conse-
quently, the scattering contains only undelayed ones an
as regular as that in the case ofE>0. Transition takes place
at « i5« ic'0.809417 when the curveI (« i ,1) passesS(1,s0).
If « i,« ic , I (« i ,1) will cut DI and the scattering will be
complicated by the resonant motion. AsDI are tilled by in-
finitely many striplike autoionization regions, the interse
tion betweenI (« i ,1) andDI implies that there are infinitely
many patterns of resonant motion for the scattering or
with fixed « i,« ic which will result in a chaotic band in the
scattering function. Furthermore, the intersection ofI (« i ,1)
with all autoionization regions will result in a hierarchy o
infinitely many regular~continuous! islands within the cha-
otic band~Fig. 7!.

With the decrease of« i , the incident curve will move
rightward and intersect with more and more partition lin
leading to more and more possible patterns of resonance
tion. The permitted forward sequences for the incident or
at a given« i can be determined as follows. Consider t
point whereI (« i ,1) crossesS(1). It corresponds to an out
going TECC orbit, which we shall call theprincipal TECC
orbit of the ensemble with incident energy« i . Assume the
forward sequence for the principal TECC orbit iscS. Then
the possible forward sequences for this ensemble are1S8,
which is larger than1S, and2S8, which is less than2S.
In both cases, we haveS8>S ~see Fig. 8!. S arrives at its
minimum, i.e.,21`, when the incident curve cutsS(1) at

FIG. 6. I (« i ,0) andI (« i ,1) ~dashed lines! with « i50.9, 0.7, and
0.5 from left to right. The resonant zone is bounded by solid lin
e
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ts

,
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ts

S(1,s1) where we have« i5« ic8 '0.043317. When« i<« ic
8 ,

I (« i ,1) will cut all partition lines and, consequently, there is
no restriction to the forward~binary! sequences for the scat-
tering orbits.

In the initial incident ensemble of fixed« i , if e2 is
equally spaced distributed according to its angle variabl

.

FIG. 7. ~a! Scattering time~defined as the lifetime of the state
satisfyingr 1 ,r 2,100) vs initial phase of the inner electronu. The
incident energye i is set as 0.01.~b! Enlargement of chaotic band of
~a!. ~c! Enlargement of the first left-hand side chaotic band of the
central regular island of~b!. This structure of self-similarity re-
sembles that which has been observed in collineare21He1 chaotic
scattering@11#, except for the fact that the tips of the cusp-shaped
regular islands correspond here to TECC rather than triple collisio
orbits.
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PRE 60 3873CHAOTIC DYNAMICS IN CLASSICAL s-WAVE HELIUM
then the classical probability for the resonant scatteringPres
can be obtained by calculating the portion ofI (« i ,1) which
are fallen intoDI . The dependence ofPres on « i are shown
in Fig. 9. It can be shown that, atS(1,s0), E(0) intersects
S(1) at a finite~nonzero! angle whileE(21) is tangential to
S(1). Therefore, immediately below the threshold« ic , Pres
increases linearly with« ic2« i .

IV. DISCUSSION

We pointed out in Sec. III E that the existence of t
smale horseshoe relies on the fact that all incoming TE
will lead to immediately ionization after an additionale-e
collision, or s1>0. This fact persists forZP(1,Zc# with Zc
'2.348086. IfZ.Zc , we haves1,0 which implies that
F(DI)ùDo5f. In this underdeveloped smale horsesh
some binary code sequences, for example1`2121`, are
forbidden. By taking the nuclear charge as unit, we can
write the Hamiltonian as

Hd5
1

2
~p1

21p2
2!2

1

r ,
2

12d

r .
,

with d51/Z. One can then naturally expect that with th
decrease ofd, more and more symbolic sequences will

FIG. 8. Schematic diagram to show how the incident cu
I (« i ,1) cuts the partition lines~solid curves!.

FIG. 9. Probability for undelayed direct, undelayed exchan
and resonant scatterings as functions of incident energy« i .
C

,

-

truncated until an integrable system is arrived atd50. The
weakening of chaos with the increase ofZ has also been
justified in calculating the uncertainty dimension for a frac
set generated by autoionization on phase space@14#. Numeri-
cal explorations on phase space show that the system
mains purely hyperbolic, i.e., has no stable island and inv
ant tori even whend'01 . This is of course not contradicte
with KAM theorem asHd is not smooth and, maybe mor
serious, has a singularity atr 15r 250. In tracing periodic
orbits ~PO’s! with d tending to zero, we find they behave
two typical ways. For the PO’s which are permitted byH0,
their instability decreases withd and atd50 they become
marginal ~parabolic! stable. Actually, a bifurcation take
place atd50 and all those PO’s will be stable ifd passes
this point. For the PO’s which are forbidden byH0 , they will
either die befored50 due to the occurrence of TECC o
become singular due to the collision with the origin and d
appear atd50. The latter case is reasonable if we notice th
the existence of those strongly coupled orbits depends o
effective redistribution ofE to E1 andE2, which can only be
realized atr 15r 2.0 when d is very small. On the other
hand, the dynamics at the limitZ→1 is more simple. Note
that the resonant zone is delimited byP56A2(Z21),
which will shrink to zero if Z decreases to 1, whenZ,1
there exists no more recurrent motion.

In s-wave helium, the electron-electron interaction h
been adopted in a spherically averaged form while its
namics closely resembles that of thee2Ze2 collinear helium
in which the repulsive interaction between the electrons
minimized @4#. In both systems we can see purely chao
bounded motion with a complete binary symbolical descr
tion and chaotic scattering which can be better related
critical escape rather than unstable periodic orbits@4,11#.
This resemblance reflects the common physics of the th
body Coulomb system resulted from its long range and s
gular interaction. Nevertheless, there exist some remark
differences between these two systems, which are dire
related to the fact that a smooth electron-electron interac
is adopted in the latter system. Ine2Ze2 collinear helium,
the collision of an orbit with the singularity atr 15r 250
cannot always be avoided as that ins-wave helium. In fact,
the global dynamics of the collinear helium is drastica
dominated by this singularity of triple collision. Affected b
the singularity, the completeness of binary symbolic dyna
ics persists forZ.Z1'0.2877742 and the escape energy
not bounded for its scattering orbits@17#. In this sense, we
say that the collinear helium is more chaotic thans-wave
helium. Moreover, the threshold behaviors in the two s
tems are qualitatively different. In the collinear helium, it h
been found that the channel for (e,2e) reaction~or chaotic
scattering! is open whenE is above~or below! the threshold
at zero and the probability of the reaction as the function
the energy deviation obeys the well-known ‘‘Wannier
power law’’ nearE50 @10#. As the existence of the Wannie
threshold law in (e,2e) scattering had been confirmed b
experiments@20#, it is reasonable to believe that thee2Ze2

collinear helium describes the correct threshold behavio
the real helium. On the contrary, in thes-wave helium, even
for Z.Zc , the (e,2e) reaction~or chaotic scattering! only
occurs whenE is above~below! a positive~negative! thresh-
old and near the threshold the increase of the probab

e
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3874 PRE 60ZAI-QIAO BAI AND YAN GU
obeys a linear law. These inappropriate results, which
also observed in the quantum calculation@16#, are physically
attributed to the lack of angular correlation between the t
electrons due to their restriction tos-wave states. We sha
here give a dynamical explanation of this difference. It h
been long realized that the motions near the symme
stretching of the two electrons on the opposite sides of
nucleus~i.e., the Wannier ridge! play an important role in the
three-particle break up at smallE.0 @19#. On the other
hand, numerical experiments on chaotic scattering ine2Ze2

collinear helium show that all resonant orbits are initiat
from the nearly symmetric outgoing electron pair. The
facts indicate that the Wannier type motions are crucia
the excitation of resonance~for E,0) or ionization~for E
.0) in real helium. However, ins-wave helium, as we have
mentioned, the symmetric motion on the Wannier ridge
excluded by the dynamics. Therefore, it cannot give a pro
description of the motion near the threshold. Despite th
differences in classical dynamics, as the singularity of tri
collision might lose its importance in quantum descripti
due to the uncertainty principle, it is expected that sim
s-wave helium will stand as a useful model in studying t
quantum chaology, rather than the threshold behavior, in
three-body Coulomb system.

V. SUMMARY

In our study of the classical dynamics ofs-wave helium,
we first introduce the motion in FD so as to eliminate t
discontinuity at TECC. The resonant~chaotic! scattering or-
bits are distinguished by the delay due to the recurrenc
reaction. Based on the qualitative behavior of the TECC
bits, the resonant zone on SOS is explicitly defined which
delimited by the critical injection and escape curves. FoZ
52, a Smale horseshoe can be constructed in the Poin´
mapping and, consequently, the binary symbolic dynamic
complete. We show that the resonant zone is tilled by i
nitely many striplike autoionization regions surrounding t
partition lines. The bounded motion, which occurs on a c
tor set in the phase space, is purely chaotic. The intersec
of incident ensemble with the resonant zone, which ta
place when the incident energy is below a threshold, ma
the onset of chaotic~resonant! scattering. The symbolic se
quences for possible resonant motion at a given incident
ergy are determined by the principal TECC orbit. Imme
ately below the threshold, the probability for resona
scattering as a function of the excess energy follows a lin
law.

ACKNOWLEDGMENTS

This work was supported by the Nonlinear Scien
Project of the Climbing Program for Fundamental Resea
. B
d

o

s
ic
e

e
o

s
er
e

e

e

e

of
r-
is

are
is
-

-
on
s
s

n-
-
t
ar

h.

APPENDIX: TECC ORBITS WHEN S˜1

Let (Ri ,Pi)5(Ar i ,Ar ipi) for i 51,2, then the dynamica
equations read

dRi

dt
5

Pi

2Ri
2

,
dPi

dt
5

Ei

Ri
, i 51,2,

from which we have

dP1

dP2
5

R2E1

R1E2
.

If an orbit has a TECC att5tc , then

@R1~ tc!,P1~ tc!#5@R2~ tc!,P2~ tc!#5A2Z21~A12s2,s!

[@Ar~s!,Pc~s!#, sP~21,1!.

Assume its two nearest crossings of SOS to the TECC oc
at t5t1 and t2 , t1,tc,t2, i.e.,

@R2~ t1!,P2~ t1!#5@R2~ t2!,2P2~ t2!#5~0,A2Z!.

According to the definition, we have

S~1,s!5@R1~ t1!,P1~ t1!# and U~1,s!5@R1~ t2!,P1~ t2!#.

If s.s05A(2Z22)/(2Z21), which implies E1.0, then
dR1 /dt, dP1 /dt.0 and we have

R1~ t1!,Ar~s!,R1~ t2!,

A2~Z21!,P1~ t1!,Pc~s!,P1~ t2!,

and

P1~ t2!5Pc~s!1E
Pc(s)

2A2ZR2E1

R1E2
dP2

5Pc~s!1E
2A2Z

Pc(s) R2E1

R1uE2u
dP2,2Pc~s!1A2Z.

When s→1, we have R1(t1),Ar(s)→0. Moreover,
P1(t2),1` and E1(s)→1` imply also R1(t2)→0. If
P1(t1)→P8 andP1(t2)→P9, then

S~1,s!→~0,P8! and U~1,s!→~0,P9!,

with

A2~Z21!,P8,A2Z21,P9,2A2Z211A2Z.
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