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Classical dynamics o$-wave helium in the case d<O0 is investigated by the geometric method. The
ambiguousness of the orbits after two-electron critical colligibBECC) is eliminated by confining the motion
to the fundamental domain defined by>r,. Scattering orbits are classified into undelayed and delayed
(resonant according to whether they can avoid the recurrence of reaction. A global Smale horseshoe on the
surface of section is constructed for the cas&ef2 which implies that the bounded motion is purely chaotic
and explains the onset of the chaotresonant scattering when the incident energy is below a threshold.
Immediately below the threshold, the probability of resonant scattering increases linearly with the energy
difference. Moreover, we found that the permitted code sequences for the scattering orbits at a given incident
energy are determined by the principal TECC orbit. Compared witlett®e™ collinear helium, theswave
helium is less chaotic and exhibits a more intricate threshold beha@0.63-651X99)06509-5

PACS numbegs): 05.45—a, 45.05+x

[. INTRODUCTION bounded many-body systeris7,18.
The paper is organized in the following way: We intro-

As one of the most important examples of a nonintegrableluce in the next section the motion sfvave helium in the
Hamiltonian system as well as a semiclassical approach tt#indamental domain and a code system which is appropriate
the strongly correlated motion in two-electron atoms or ionsfor @ symbolic description of the orbits. In Sec. Ill, we give
the classical dynamics of three-body Coulomb system had comprehensive account of the global behaviors in the case
been attracting increasing attention in recent year®f E<O, which includes the Smale horseshoe and the ac-
[1-14,17. However, being complicated by its multidimen- companying symbolic dynamics, the tilling of the surface of
sional, nonseparable and nonperturbative nature, the problefgction(SOS by the escape and injection regions and the
still remains a challenge for physicidgis]. Thus far, several classification of scattering orbits. This is followed by a gen-
simplified models have been proposed, among them, theral discussion and a brief summary.
swave helium, where the two electrons are restricted to
spherical states with individual angular momentum equal to Il. PRELIMINARY
zero, is one of the most physically transparent models. In this
model, it is found that the bounded motion is purely chaotic
while almost all initial points will lead to the escape of one In the swave model, a two-electron atom or ion is de-
electron, i.e., autoionization, and the lifetime distribution in-scribed as two spherical shells of charg& expanding and
duces a fractal structure on phase sgd@, which are very contracting around a fixed nucleus of chayeThe Hamil-
similar to the phenomena observed in the numerical studietonian of this model in atomic units can be written[48]
on the coplanar three-body Coulomb systd®9]. In addi-
tion, quantum calculations of bounded as well as scattering H
states based on this model have also yielded reasonable re-
sults [15,16]. All these facts give hope that the essential
physics of the original system is well preserved in this sim-wherer - =min{r,,ro} andr. =maxry r} with r;=0 andp;
plified model. being coordinate and momentumidti electron {=1,2). As

Despite the many important and interesting phenomengompared with other restricted helium models, theave
discovered in the classicaiwave helium, a direct account of model exhibits the simplest dynamics in the sense that the
the global dynamics of this system, especially its dependendd/o electrons are actually uncoupled between their two con-
upon the nuclear charge numbgr is still lacking. In this ~ Secutive encounters, so that the energy of each electron, i.e.,
paper we shall investigate trewave Coulomb three-body E1=3pi—(Z—1)/ry, E,=3p5—Z/r, if ri>r, or E;
system by geometrical methods so as to understand all its%pf—Z/rl, E2=%p§—(2—1)/r2 if r,>r,, keeps, for the
important global properties. In order to eliminate the discon-most time, constant. Theee interaction takes place when the
tinuity at two-electron critical collisions, we take advantagetwo electrons collide at,=r,=p, where the energy could
of the electron exchange symmetry of the system and studye transferred between the two electrons. As a result, only
its motion in the fundamental domain. Then there comes ghe total energ\E=E;+E, is a global constant of motion.
category of criticale-e collision orbits which are crucial to Furthermore, the homogeneous potential implies a scaling
the understanding of the qualitative dynamics of the systemsymmetry(similarity principle, by which we can scal& to
Special attention is also paid to the critical escape and criti— 1 as we consider only the case of negative total energy in
cal injection orbits, which play an important role in the un- this paper19].

A. Critical collision between electrons

1 Z Z-1
zz(prrp%)——— ,

S

1063-651X/99/6(%)/386610)/$15.00 PRE 60 3866 © 1999 The American Physical Society



PRE 60 CHAOTIC DYNAMICS IN CLASSICAL ssWAVE HELIUM 3867

ments by the points of intersection. As between two consecu-

tive crossings of SOS, an orbit can attain the ridge of the
potential atr,=r, (i.e., lead to ane-e collision) at most
— once, we assign a code or + to the segment when there is
an or noe-e collision. Besides these two general cases, we
give ac (which can be regarded as the degeneratednd
+) to the critical situation when a TECC occurs. In this
two ortits nearby extended binary code system, an orbit is represented by a
a TECC bi-infinite symbolic sequence made up from the codes of its
sequential segments

. .0-720-710-00-1. CE

0 3 6 whereo;e{+,—,c}, i e Z. We add a * to this sequence, i.e.,

1 ...0'720'7100'00'1...,

FIG. 1. Two orbits which pass near a TECC. They are symmet-t
ric with respect to the Wannier ridge =r, (dashed ling after
approaching the TECC.

o mark the present point of this orbit on SOS. Then the
action of the PoincarmappingF (or F 1) manifests itself as

a right-shift (or left-shift) of ¢ in the corresponding code
sequence. Moreover, we dendi#) the region on SOS
where all the points share a common segment of symbolic
'sequence (with »).

An e-e collision can be labeled bypg,p,), the momen-
tums of the two electrons immediately before it occurs or
alternatively, by P;,P,)=(\pp1,Vpp,) for convenience.
Then all events ofe-e collision are represented in the
(P4,P,) plane by an open disk defined by the energy rela- lll. GLOBAL DYNAMICS
tion P§+ P%=2(22—1—p)<2(22—1). Among these col- A. General consideration
lisions, there exists a special category characterizedP py
=P,=P., each of them we call a two-electron critical col-
lision (TECO).

The motion at a TECC is not continuous, i.e., starting
immediately before it withr;=r,+0 andp;=p,+0 will
thereafter lead to two orbits which are symmetric with re-
spect to the line of ;=r, (see Fig. 1L However, if we take
advantage of the electron exchange symmetry and study t
motion in the fundamental domai{D) defined byr,;>r,
[4], this am_blguny can bE eliminated. By setting an elast|-<0’ andE2=E2<—E2. The reaction begins at=t, when
cally reflection wall atr,=r,, e;(ep) will always be the

outexinnen electron and an orbit can be unambiguously con-S1 st collidese, atr,=r,=p where we havep,<p. If
tinued after a TECC. p>,<0, then both electrons will move inwards until the inner

Note that the symmetric motion of the electron pair on the®ne collides with the nucleus and turns back, which will lead

Wannier ridge (,=r,) is excluded from the dynamics. The to an add|t|0nale-eo CO||ISI’OI’1 at r1=0r2=p’ with p/<.p'

reason is that the Wannier orlfit it exists in sswave helium Then we havée, =E; +1/p N 1/p>.E1 andp>|pa, Wh'(.:h. .

is isolated on the steep ridge and cannot be approached by f§ables the outer electron immediately escape to the infinity.

nearby orbits. Instead of the Wannier orbit, we have a catln Other words, an initial head-to-taé-e collision will al-

egory of TECC orbits, which play an important role in un- Ways regult in a direct scatten_rl[gs we consider the motion

derstanding the qualitative behavior of thevave model as 1N FD, directexchangg scattering actually means a scatter-

it will be shown latter. ing with everfodd) e-e collisions| and the outgoing energy is
always greater than the incident energy. Moreover, simple
calculations show that the firste collision always happens

B. Surface of section and the symbolic description of orbits atr|{=r,=p=py= 1/(E2— Eg), and we shall have a TECC

By using the Poincarsection method, the dynamics is [i-e., p1(to) =pa(to)] if and only if p=pg;.
reduced to a two-dimensional mapping. The surface of sec- If p,(to)>0, however, the outcome is more complex.
tion can be set at,=0, i.e., at the collision between the From the viewpoint of continuity, i&, is sufficiently near to
inner electron and the nucleus. To eliminate the divergencés return point at,, i.e., p~Z/|ES, the orbit will also lead
of p; whenr;—0, the coordinatesR,P)=(\r;,\r.p;) on  to direct scattering. On the other handpifs too small and
SOS are used, in terms of which the mapping is area preserthe momentum transferred between the two electrons is suf-
ing. ficiently large, the outer electron will be directly knocked out
A symbolic method can be used to give a qualitative de-after the firste-e collision and an exchange scattering will
scription of the dynamics. Since an arbitrary orbit, boundedccur. We denote the two regions which immediately lead to
as well as unbounded, will cross SOS for infinitely manydirect and exchange scatterings py p., and p<<p.s, re-
times, each orbit can be divided into infinitely many seg-spectively. In Sec. Il G, we shall show that,=p.s if €;

It is found that the motion in the case BE&O0 is qualita-
tively simple. All the orbits are initiated from one or two
electrorgs) injection and terminated at the ionization of one
or both electrofs) after a brief time of coupled motion,
which we call a reaction, near the nuclg¢ds8]. In the case of
E<O0, however, the recurrence of reaction may occur and,
consequently, the system will exhibit a more complicated

namics.

Consider an injecting orbit initiated witk;= E(1)>0, Py
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Sc—+%, se(—Sy,—Sy),

S +OOC_+OO, SE(_l,_So],

where X represents a sequence different from” and
—+%. As a result, if an orbit experiences at least two
08 TECC's, i.e., its code sequence contains a segment of

0 05 177 cX’c (X' contains only+ and —), then the former TECC

/ must occur ase (s1,Sp) (outgoing wave while the latter at

se(—sg,—$S1) (incoming wave and its full sequence must
be+*—cX’'c—+~, i.e., itis a resonant scattering orbit with
—|EYEY=¢, (~0.809417 forz=2) and for such initial only two TECC's. We shall call such an orbit a bicritical

conditions all the orbits will be ended in the escape of theCOIIISIOn orbit (BCCO).

outer electron after the first reaction and the scattering is as o _

regular as that in the case of non-negative total energy. How- C. Partition lines induced by TECC orbits

ever, if &;<ejc, pc3 WIll be less thanp,, and whenp The TECC orbits will intersect with SOS infinitely many
€ (pc3.pc2), the outer electron cannot escape to the infinitytimes. We shall denote their first intersection after TECC by
(E1<0) after the first reaction and an additional reaction isU(1) and their last intersection before TECC 8f1). The
inevitable due to the reinjection of the outgoing electron.points onU(1) andS(1) can be labeled by the parameter
Actually, the iteration of this process will result in chaotic se (—1,1) for the corresponding TECC’s and will be de-

scattering. noted asU(1,s) and S(1,s), which are connected by the
Based on the above discussion, the unbounded orbits iRoincaremapping, i.e.,

the case ofE<O0 can be categorized into two classes, i.e.,

undelayedor fash and delayedor resonantscatterings ac- F:S(1s)—U(ls), se(—117).
cording whether or not they can avoid the recurrence of re- , o
action. In the former class, there are undelayed direct anti/nile the symmetry of time reversal implies
exghange scatter_ings whic_h are coded by — — +°“_ and S(18)=[U(1,—9)]*,
+%—+%, respectively. While for the latter class, it has a

great diversity of permitted code sequences, correspondinghere the asterisk denotes the reflecti®R)* =(R,— P).
to a multitude of possible patterns for the resonant motion.  §(1) andU(1) for Z=2 are shown in Fig. @), from

which we can see that both their ends approach the boundary

FIG. 2. The dependence ef upon the charge numbet

B. Symbolic sequences for TECC orbits R=0, i.e.,

All TECC’s can be naturally parametrized ,=P, limS(1,5)=(0,P’), limU(1s)=(0,P")
=P.=sy2Z—1 with se(—1,1). Consider an orbit having so1 PV n
TECC with labels. If s=sy=/(2Z—-2)/(2Z—1), then after _
this collision we havep;=p,>0 andE;=0 ande; will  and the time reversal

immediately escape to the infinity. In additia® sy implies i . "
that the energy of the outgoing electron is zero, i.e. a critical . |n:|lS(1,s)— (0,=P%),
escape will occur. On the other handsi — s, discussion

told us that after such TECC, the outer electron will imme-

lim U(1,s)=(0,—P").

s——1

diately escape after an additiorek collision. Since a head- V2(Z—-1)<P'<\2Z—-1<P"<2\2Z—-1+2Z.
to-tail collision with negativeEg may also lead to the same _ . _
result, we can find a larger intervat-(1,s;) D(—1,—s,) for By using the symbols introduced in Sec. Il, we have ob-

the TECC orbits which will escape after one more e-e colli-viously U(1)=4(c) and S(1)=U(sc). As c marks the
sion and the energy of the escaping electron becomes zegsitical state in the transition between and — in the sym-
when s=s;. Numerical study shows that,;>0 for Z=2  bolic description of orbits, we can see that b&ft) and
while for the integersZ>2, we haves;<0 (Fig. 2. As it  U(1) are partition lines on SOS. The region confined within
can be seen later, the sign ef is crucial to the global S(1) isl(s—) while that outsideS(1) isU(s+). U(*—) is
dynamics of theswave model Coulomb three-body systemsbounded and its measure is42 1), which is proportional
and we shall consider only the caZe=2 in the following to the flux of orbits that hit the reflection wall at=r, and
discussion. By making use of the time reversal symmetrycan be calculated from the Stokes’ lemma, wide +) is
the symbolic sequences for the TECC orbits could be sumdnbounded. SimilarlyU(1) divides SOS intd/(—+) and

marized as follows; U(te). ;
The Poincarenapping is continuous &(1), i.e., if point
+7—c+” for se[sy1), X; approaches a given poir(1,s), then X;=F(X;) will
tend toU(1,s). Furthermore, ifX; e U(* +), as the orbit con-
+7-c%, se(s1,50), nectingX; andX; changes smoothly, the tangent n{dpco-

bian) is also well defined. However, K; e (s —), the cor-
+%—c—+", se[—5s1,5], responding orbit will lead a reflection a{=r,, which will
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FIG. 3. (a) The partition linesS(1) andU (1) (dotted lines. (b)
The resonant zone boundarigsolid lines E,, E(0) [from
U(1,s0) to S(1,509)], and E(—1) [S(1,50) to S(2,50)], and their
time reversal(dashed lines!|_, 1(0) [S(1,—sp) to U(1,—sp)]
and 1(1) [U(1,—sp) to U(2,—sp)]. (c) The resonant zon®
=D,UD,UDg.

generally cause a variation of orbit to the ordersdf if the
deviation ofX; from S(1,s) is of orderé. Hence the Jacobian
will generally be singular or§(1). This singularity due to

For example, the critical escape life(O)UE, crosses
U(l) at point U(lsy) while F Y E(0)UE,]
=E(—1)UE(0)UE, shows a cusp at poirs(1,sy) [see
Fig. 3b)].

D. Resonant zone on SOS

The resonant zone, denote it By can be so defined on
SOS that a scattering orbit is a resonant one if and only if it
intersects with SOS withiD at least one time. In order to
show this zone explicitly, we introduce another set of parti-
tion lines related to critical escape and injection.

Consider the region on SOS where the outer electron can
immediately escape to infinity, i.el{(*+~). Note that the
conditions thafp,;>0 andE;=0 cannot ensure the immedi-
ate escape oé,, i.e., whenr, is too small,e, will move
faster thane; and may catch up with it despite,<O<E,.
Therefore, in this regiork, should be greater than a positive
threshold so as to prevent the unwanted encounter &yith
The lower boundary ot/(e+>) can be determined as fol-
lows. In the region wher® is sufficiently large, the bound-
ary is the horizontal line oP= \2(Z—1), whereE;=0 and
p,>0. This straight boundary can be extended to the shall
region until it crosse®J(1) atU(1,sy) and ends af(1,s)
on S(1). ThenS(1,s) with se (sp,1) forms another piece of
lower boundary of/(s+*) whereR is so small that a posi-
tive threshold for escape energy exigtsy. 3(b)]. We denote
the lower boundary of/(e+ ) outsideU(1) by E, and that
betweenU(1,s;) and S(1,s;) by E(0). E(0) forms one
piece of lower boundary far/(— <+ ), which is the part of
U(*+*) confined withinU(1). Obviously, each escape orbit
must cros$/(—«+) once and only once, which can then be
looked at as the representatives for all escape orbits.

DenoteF “Y[E(0)] by E(—1) [see Fig. 8)] which has
two endpointsS(1,s,) andS(2,s0)=F " S(1,5,)] and rep-
resents a piece of the boundary l@fe — +*)=F {1/ —
+%)]. Discussion on the TECC orbits told us tt&{tl,s) for
se[—s;,1) share a common backward sequeneé—s.
Noting thats,> —s;, we have

S(1,50) eU(+7—<)CU(—*) and
S(2,50) eU(+Te—)CU(H+*).

Therefore, the location of the two endpoints implies that
E(—1) must crossJ(1). Thepoint of intersection must be
U(1,s,), as it corresponds to the orbit that has a TECC and
leads to critical escape after an additiorad collision.

By acting the time reversal operatio®P{ —P), E,,
E(0), andE(—1) are converted to_, 1(0), andl(1) re-
spectively[Fig. 3(b)]. The critical injection linel _UI1(0)
forms the upper boundary of the injecting regitf+ ~e)
with P=—+2(Z—1). I(1)=F[I(0)] is a piece of the
boundary fori/(+*—-¢). The two end points of (0) are
S(1,—sp) andU(1,—sg). SinceS(2,sp) eU(+7+—) is be-
low 1(0) and —sy<<s; implies thatU(1,s,) is abovel (0),
I(0) must cros€E(—1). The crossing point corresponds to
an orbit which begins with zero energy injection and ends in

the sudden appearance of reflection explains the folding of aritical escape after one-e collision, where we must have

smooth curve that cut§(1) [or U(1)] when mapped by

ri=r,=1 and p,=—p;=+2(Z—1). Consequently, the

(or F~1) as we shall frequently see in the following studies.point is unique and in Fig.(8) it is denoted byA. Sincel (1)
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has its lower end point)(1,—sy) and the upper end point
U(2,—sg)=F[U(1,—sg)]lelU(—++7), it in turn crosses
E(—1) at pointB (located atP=0 and numerically found
unique, S(1) at point S(1,—s;) and E(0) at point A*
=F(A) [Fig. 30)].

Based on the above discussion, the resonant foroa
SOS can be defined as the complement of

G

U +T)UU(+ T )UU+T—o— +7),

wherel(+%—e—+*)=U(s— +")NU(+"—¢). It is a sym-
metric region with respect t€=0 confined by the critical
escape and injection curves. The upper boundary is A
E ., UE(0) while the upper left one is part &(—1) from S(Ls) e o .
S(1,50) to the pointB. The boundary can be completed by :
adding the time reversal of the former two, i.e.,Ul(0)
and a part ofl (1) from U(1,—sp) to point B. We further
divide D into three parts, i.e.p=D,UDgUDg with D,
=DNU(+7—¢), Do=DNU(*—+7), and what remained
is denoted byDg . D, is a trianglelike region. Its three edges
areE(0) from pointA* to S(1,sp), E(—1) from S(1,s) to
point B, and a segment df(1) from pointB to point A*,
respectively{Fig. 3(c)]. Do is the time reversal db, . For a :
delayed scattering orbit, its symbolic sequence must-Be B Vil
-3 —+%, where, is a finite string of lengttk which de-
scribes its resonant motion. Then the orbit will consecutively S(2s
crossD at k+1 points, the first and last of them are con- ) °
tained inD, and D respectively while all the middl&—1
points are located withiDg. In this meaning, we say that FIG. 4. The deformation of the fibers Mg under the action of
D, is the entrance whil®, is the exit of the resonant zone F *. Three representative fiber§(—1) from S(1s,) to point A,
D. In addition, for a bounded orbit, all the points of intersec-S(1) from S(1.s,) to S(1,—sp) and E;UE(0), which can be
tion must be confined withiDg . looked as meek_ at infinity (point G), as well as two other fibers
between them are shown {g). Images of these five fibers mapped
by F~* are shown inb). The shadowed area 5 (D).

S(l,sl)

E. Horseshoe and partition of SOS piece of fiber is split into two, which manifest the stretching

We are now ready to show the Smale horseshoe structuiand folding ofDg . In fact, it is topologically a smale horse-
in the dynamics. To demonstrate the deformatiomgfun-  shoe(Fig. 5).
der the action of ~1, we fill D,UDg with many fibers and For each piece of new generated fiber, we do not know
see how they are changed by the mé&jg. 4(a)]. Each of  whether or not it crossed(1) also at only one point. How-
these fibers satisfies thai,) its one end is located at the ever, our numerical study shows that it is true for the sequen-
lower boundary ofDg while another, for simplicity, is tial series of fibers generated from the primary figét,s),
S(1,50) so that it must crost/(1) and(ii) the point of in- se[—sy,5,] by repeating the inverse Poincamsapping
tersection is unique, which must b§1,s), se[s;,S,]. Ina  F L. The fibers of thekth generation are actually segments
topologically deformed diagram dd,UDg shown in Fig. of S(k)=F ¥"[S(1)](k=1) included within D,UDg.
5(a), all those fibers as well a§(1) vertically crossDg Each segment o8(k), e.g.,U(*2c), crossedU(1) only at
while U(1) horizontally cuts all the fibers. Under the action one point, by which it is divided into two parfg(—<2c)
of F~1, the points of intersection witt/ (1) are now mapped [inside U(1)] and U(++3c) [outside U(1)]. These two
to S(1.8), se[s1,Sg), which can be regarded as the upperparts are mapped by ! to (—3c) and4(s+3c), then
endpoints for the fibers of next generatidfig. 5(c)]. In the  become two pieces @(k+ 1). Therefore S(k) is made up
meantime the upper endpoints of the primary fibers movdrom 271 pieces, i.e.Z(+3c) with 3 exhaust all binary
into U(+>+—) [e.g., the poinB(1,sy) is mapped tB(2,sy), (contains only+ and —) sequences of length— 1 and each
see Fig. 4b)], leading the fibers crod{0) and their points of them cutsU(1) and yields a BCCO with code sequence
of intersection become the lower endpoints for the new fi-+*—c3c— +*. Moreover, by the ®—1 pieces of partition
bers. Finally, the lower ends located at the lower boundary ofines S(k’), 1<k’=<k, 2 cells is determined on SOS. As
Dg [i.e., I(0)Ul_] remain on it and they move rightward can be regarded as the degeneratednd —, the two cells
into 1_ to make room for the newcomef®.g., pointA  on the both sides of the partition lirig(+>c) arel(> +)
moves to pointA’, see Fig. 40)]. Note here that the fact andi/(3 —), respectively. Thereforé/(+3) # ¢ for an ar-
s;=0 is crucial to guarantee all the new-generated fibersitrary binary sequencg of lengthk, or the binary symbolic
crossingDg [see Fig. &)]. Therefore, mapped by 1, one dynamics is complete.
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S(1) Consider the regiorF "1(Do) [shadowed area in Fig.
//\ 4(b)]. It is an autoionization region, in which the code se-
T guences for the escape orbits are—=<+~, o=+,—,c. Its
S(1sd S(1%:) upper end isS(1,s;) while the lower end is a line segment
. from B’=F }(B)el(0) to A’=F }(A)el_, which be-
S, So longs to the lower boundary @g. Therefore, this striplike
L)) autoionization region, which contains the partition line
U(Ls,) U(L,s0) S(1,3), se[—sg,51), “vertically” crossesDg and, as a re-
A S(ls) G sult, will also be subjected to stretching and folding under
: the action ofF ~2, just like the reduplication of the partition
lines. Therefore, withi zgUD, , the partition liné{(<2.c) is
@ () enclosed by an autoionization region in which the sequences
for the escape orbits ar&v—+~, o=+,—,c. Moreover,

B A

SQ) orbits start from both two edges of those striplike regions
will lead to critical escape.

8 \f° So The completeness of symbolic dynamics indicates that
e \\\ / there exist a great diversity of escaping patterns in the reso-
i /% ™ RN nant zone. In fact, if we view the transformation of these
’ | u() /{1\ autoionization regions in a time reversal version by making
‘ L ‘ use of the reflectio®— — P, we will obtain a picture of the
N7 2 , evolution of D, (which can be regarded as the ensemble of

/' B A the resonant scattering orbitd.e., endless stretching and
folding under the action of while part of its orbits fall into
d) Do and escape away. When we take all those infinitely many
(©) striplike autoionization regions together with their time re-

versal(i.e., the resonant injection regionaway fromDg,
FIG. 5. Schematic diagram showing the horsesli@eDg (the ~ the remaining set forms a fractal basin which gives the
rectangleABA* G) and five vertical fibers in it. Poin represents bounded motion.
the edge oDy at infinity. (b) Stretching.(c) Folding whens; >0,
the shadowed area 5 %(D,). (d) Folding whens; <0. G. Scattering orbits

A scattering orbit can be initiated as follows. The inner
electron () is oscillating near the nucleus with fixed nega-
tive energyEg while the outer electron ¢ is injecting from

As each piece of partition line crosseéq1) once and
only once, we can give a natural order to the symbolic se
quences such that <X, if and only if (*X;) crosses g . i o >
U(1) at smallers than that o4(~3.,), where.; ands., are a s(l)Jff|C|entIy far distance with positive energ&(l’——.l .
two arbitrary admissible sequences. The coarsest partition of E2- AS the two electrons are uncoupled before their first
SOS gives— <c< +. From the forgoing discussion on the €ncounter, we can simply fie, at a distance out of the

deformation ofS(k) under the inverse Poincaneapping, we ~ 2MmPplitude ofe, and scan the phase e} so as to overview
know that adding a to a sequence will result in the stretch- gll scattering orbits for a given incident energy. The scatter-

ing of the corresponding region while adding-awill lead ing functions are defined as the dependence of the final quan-

to an additional folding, se+ will preserve the order while f[ities, such as_thg final escape energy or the time of scatter-
~ will reverse it i.e ing, upon the initial state parameter, i.e., the phase,of

Immediately before the first e-e collision, the incident or-
3,<3,=+3,<+3, and —3,;>-3,, bits must cross SOS within the regioff+>~+—) and these
representative points can be looked as the injection en-
which is the same as that in the one-dimensional unimoda?emble' Since the scaling symmetry of Coulomb systems im-

map. Moreover, the well defined order for the complete Seplles that the behavior of scattering orbits at an arbitrary

of symbolic sequences implies that the bounded motion irpegative total energy depends only on the scaled incident

Dg is homeomorphic to the two-dimensional Baker’s trans-en?rgy_‘si:El_/|_E2| < (0.1), itis cc_)nve_nle_nt to organize the
formation. points in the injection ensemble into incident curves accord-

ing to differente; and denote each incident curve by

F. Tilling of resonant zone by autoionization regions { "
_ ] [(£;,00=1 (R,P)eU(+"+—)|P
We have seen that all BCCO'’s are scattering orbits. Ac-
tually, almost all initially bounded&,,E,<<0) motion will e 112
end in autoionization and it has been pointed out in Ref] = —[Z(Z— 1+ —IRZH ]
that the lifetime of the resonant motion imposes a fractal
structure on phase space, leaving a cantor set fotdely)
bounded trajectories. Geometrically, this fact can be undeWhene;—0, I(g;,0) will approachl (0), thecritical injec-
stood as the tilling of the resonant zone by the autoionizatiotion line. With the increase of;, I(&;,0) moves leftward
regionsF (Do), k>0. and tends to the boundaR=0 whene;— 1 (Fig. 6).

1_8i
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FIG. 6. 1(¢;,0) andl(&;,1) (dashed lineswith £;=0.9, 0.7, and 2500 1=
0.5 from left to right. The resonant zone is bounded by solid lines,

t 2000

After one more crossing of SOS, the injection ensemble
arrives U(+~—-¢) which are filled with incident curves
[(&;,1)=F[1(¢;,0)]. By the partition lineS(1,s)(s>s,) and
the critical escape curves(0) andE(—1) [from point A*
to S(1,s0) then to pointB], (+“—=*) is divided into three
parts. The uppermost one is its intersection -+ +) -0.05 02 0.45
where the orbits will end in undelayed exchange scattering 0/21[
with code sequence-“— +~ while the lowermost one is (b)
confined withinZ/(s— +*) where the orbits will give direct
scattering coded by “— — +*. The middle part i, , with 3000
the cusp aB(1,sy) delimited byE(0) andE(—1), where the
orbits will start their resonant motion. Note that not all inci- 2500 -
dent curves can intersect wih, . If ¢; is too large, the curve -
will cut §(1) atS(1,s) with s>s, and not cros®, . Conse- ¢ 2000 | -
qguently, the scattering contains only undelayed ones and ¢

1500

1000

as regular as that in the caseE# 0. Transition takes place 1500 |-

ate;=¢€,,~0.809417 when the curiée;,1) passe$(1,sy).

If &,<eic, I(&;,1) will cut D, and the scattering will be 1000

complicated by the resonant motion. Rg are tilled by in-

finitely many striplike autoionization regions, the intersec- 500 L ‘
0.09 0.12 0.15

tion between (g;,1) andD, implies that there are infinitely
many patterns of resonant motion for the scattering orbit:
with fixed &, <&;. which will result in a chaotic band in the (c)
scattering function. Furthermore, the intersection (f;,1)

with all autoionization regions will result in a hierarchy of ~ FIG. 7. (8 Scattering time(defined as the lifetime of the state

infinitely many regularcontinuous islands within the cha- satisfyingr,r,<<100) vs initial phase of the inner electrén The
otic band(Fig. 7). incident energy; is set as 0.01(b) Enlargement of chaotic band of

With the decrease of: . the incident curve will move (a. (c) Enlargement of the first left-hand side chaotic band of the
1

rightward and intersect with more and more partition Iines,Central regular i_sland otb). This struct_ure Of s€ If-sinlilarity re-

leading to more and more possible patterns of resonance mgemples that which has been observed in colliar He™ chaotic

tion. The permitted forward sequences for the incident orbit Scattem.]g[ll]’ except for the fact that the tips of the Cl.JSp-Sha.p.ed
. . - egular islands correspond here to TECC rather than triple collision

at a giveneg; can be determined as follows. Consider the .

point wherel (g;,1) crossesS(1). It corresponds to an out-

going TECC orbit, which we shall call thgrincipal TECC )

orbit of the ensemble with incident energy. Assume the S(1,5;) where we haves;=¢;,~0.043317. Whers;<g;.,

forward sequence for the principal TECC orbitds. Then  I(g;,1) will cut all partition lines and, consequently, there is

the possible forward sequences for this ensembletaXé,  no restriction to the forwarébinary) sequences for the scat-

which is larger thant+ 3, and—3', which is less than-X.  tering orbits.

In both cases, we have’=3 (see Fig. 8 X arrives at its In the initial incident ensemble of fixed;, if e, is

minimum, i.e.,—+%, when the incident curve cu§(1) at  equally spaced distributed according to its angle variable

6/2n
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truncated until an integrable system is arrivedsat0. The
weakening of chaos with the increase ofhas also been
justified in calculating the uncertainty dimension for a fractal
set generated by autoionization on phase sphée Numeri-

cal explorations on phase space show that the system re-
mains purely hyperbolic, i.e., has no stable island and invari-
ant tori even wherd~0. . This is of course not contradicted
with KAM theorem asH 5 is not smooth and, maybe more

: serious, has a singularity at=r,=0. In tracing periodic

, orbits (PO’s) with § tending to zero, we find they behave in

i -y -3 -3 two typical ways. For the PO’s which are permitted Hy,
|

|

|

+2 + 3 + X

|

|
principal :
TECC i
|

|

I( e,1) i their instability decreases with and at6=0 they become
' ST <X marginal (paraboli¢ stable. Actually, a bifurcation takes

place at6=0 and all those PO’s will be stable & passes
this point. For the PO’s which are forbidden By, they will
either die before5=0 due to the occurrence of TECC or
become singular due to the collision with the origin and dis-

i . appear ab=0. The latter case is reasonable if we notice that
then the classical probability for the resonant scatteRpg e existence of those strongly coupled orbits depends on an
can be obtained by calculating the portionl¢t;,1) which  gftective redistribution of to E, andE,, which can only be

are fallen intoD, . The dependence ¢ s0n &; are shown [ 5jized atr,=r,=0 when é is very small. On the other

in Fig. 9. It can be shown that, &(1,o), E(0) intersects  panq; the dynamics at the limz— 1 is more simple. Note

S(1) at a finite(nonzerg angle whileE(— 1) is tangential to that the resonant zone is delimited By==2(Z—1)
S(1). Therefore, immediately below the threshalgl, Pres which will shrink to zero ifZ decreases to 1, whea< 1’

increases linearly witls;.—¢; . there exists no more recurrent motion.
In swave helium, the electron-electron interaction has
IV. DISCUSSION been adopted in a spherically averaged form while its dy-
We pointed out in Sec. IIIE that the existence of the Namics closely resembles that of theZe™ collinear helium

smale horseshoe relies on the fact that all incoming TEC('fq.V\.’hi_Ch the repulsive interaction between the electrons.is
will lead to immediately ionization after an additionele  Minimized[4]. In both systems we can see purely chaotic

collision, ors;=0. This fact persists foZ e (1,Z.] with Z, Eoundec(iﬂ thti?[.n Withta (:_ompltehte rE)inary syrr;)botlical dlesc(;i}:i—
~2.348086. IfZ>Z., we haves;<0 which implies that lon and chaotic scattering which can be better related to

F(D,)ND,= 6. In this underdeveloped smale horseshoecritical escape rather than unstable periodic orpitgl1].
somla bin::ry code sequences, for example- + — +*, are This resemblance reflects the common physics of the three-

forbidden. By taking the nuclear charge as unit, we can repOdy _Coulom.b system resulted from its !ong range and sin-
write the Hamiltonian as gular interaction. Nevertheless, there exist some remarkable

differences between these two systems, which are directly
1 1-5 related to the fact that a smooth electron-electron interaction
, is adopted in the latter system. & Ze~ collinear helium,
the collision of an orbit with the singularity at;=r,=0
cannot always be avoided as thatsiwvave helium. In fact,
the global dynamics of the collinear helium is drastically
dominated by this singularity of triple collision. Affected by
the singularity, the completeness of binary symbolic dynam-

FIG. 8. Schematic diagram to show how the incident curve
I(ei,1) cuts the partition linegsolid curves.

1
Hs=5(pi+p3)—

[P
with 6=1/Z. One can then naturally expect that with the
decrease o, more and more symbolic sequences will be

o - ics persists foZz>2Z,~0.2877742 and the escape energy is
7 - not bounded for its scattering orbif&7]. In this sense, we
e — Direct say that the collinear helium is more chaotic threwave
06 | 7 — Exchange helium. Moreover, the threshold behaviors in the two sys-

tems are qualitatively different. In the collinear helium, it has
been found that the channel foe,@e) reaction(or chaotic
scattering is open wherE is above(or below the threshold
at zero and the probability of the reaction as the function of
the energy deviation obeys the well-known “Wannier’s
power law” nearE= 0 [10]. As the existence of the Wannier
threshold law in é,2e) scattering had been confirmed by
experimentg20], it is reasonable to believe that teeZe™
1 collinear helium describes the correct threshold behavior of
€ the real helium. On the contrary, in tisevave helium, even
' for zZ>Z., the (e,2e) reaction(or chaotic scatteringonly
FIG. 9. Probability for undelayed direct, undelayed exchangeoccurs wherE is above(below) a positivénegative thresh-
and resonant scatterings as functions of incident energy old and near the threshold the increase of the probability

Probability
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obeys a linear law. These inappropriate results, which had APPENDIX: TECC ORBITS WHEN S—1
also observed in the quantum calculatjd®], are physically _ .
attributed to the lack of angular correlation between the two Let (R; Pi)=(ri,\Fip)) for i=1,2, then the dynamical
electrons due to their restriction Bwave states. We shall €9quations read

here give a dynamical explanation of this difference. It has

been long realized that the motions near the symmetric ﬁ:i ﬁ:E =12

stretching of the two electrons on the opposite sides of the dt 2Ri2’ dt R’ o

nucleus(i.e., the Wannier ridgeplay an important role in the

three-particle break up at smai>0 [19]. On the other from which we have

hand, numerical experiments on chaotic scattering/ide"

collinear helium show that all resonant orbits are initiated dP; R,E;

from the nearly symmetric outgoing electron pair. These daP.  RE.

facts indicate that the Wannier type motions are crucial to 2 =2

the excitation of resonanddor E<0) or ionization(for E If an orbit has a TECC at=t.. then

>0) in real helium. However, ig-wave helium, as we have <
mentioned, the symmetric motion on the Wannier ridge is _ _ — —=

excluded by the dynamics. Therefore, it cannot give a proper [Ru(te), P1(te) J=[Ra(te), Pa(te) = V22— 1(V1-5s%,s)
description of the motion near the threshold. Despite those E[m, P.(s)], se(—1,2.

differences in classical dynamics, as the singularity of triple

collision might lose its importance in quantum descriptionAssume its two nearest crossings of SOS to the TECC occur
due to the uncertainty principle, it is expected that simpleatt=t, andt,, t;<t.<t,, i.e.,

s-wave helium will stand as a useful model in studying the

quantum chaology, rather than the threshold behavior, inthe R, (t,),P,(t;)]=[Ry(t,), — Po(t,)]=(0+22).
three-body Coulomb system.

According to the definition, we have
V. SUMMARY

In our study of the classical dynamics sfvave helium, S(1,5)=[Ry(t1),P1(t1)] and U(1,s)=[Ry(t),Pa(t2)].

we first introduce the motion in FD so as to eliminate the — (2Z=2)iZ=-1) .
discontinuity at TECC. The resonaftthaotio scattering or- If s>So=(22=2)/(2Z=1), which implies E,>0, then

bits are distinguished by the delay due to the recurrence oquldt’ dP,/dt>0 and we have
reaction. Based on the qualitative behavior of the TECC or-

bits, the resonant zone on SOS is explicitly defined which is Ri(t1) <p(s)<Ry(t2),
delimited by the critical injection and escape curves. Eor [2(Z=1)<Py(t;) <P(S)<Ps(t,)

=2, a Smale horseshoe can be constructed in the Poincare
mapping and, consequently, the binary symbolic dynamics ig
complete. We show that the resonant zone is tilled by infi-
nitely many striplike autoionization regions surrounding the - 2ZR,E,
partition lines. The bounded motion, which occurs on a can-  P(ty)= Pc(s)+f dP,
tor set in the phase space, is purely chaotic. The intersection Po(s) RiE2

of incident ensemble with the resonant zone, which takes Pu(s) R,E;
place when the incident energy is below a threshold, marks =P.(s J —
the onset of chaoti¢resonant scattering. The symbolic se- - 2ZRy[Ey|
guences for possible resonant motion at a given incident en-
ergy are determined by the principal TECC orbit. Immedi-When s—1, we have Ry(t;)<p(s)—0. Moreover,
ately below the threshold, the probability for resonantP1(t2)< T and El(s)_ﬁoo imply also Ry(t;)—0. If
scattering as a function of the excess energy follows a linedf 1(t1) =P’ andPy(t;)—P”, then

law.
S(1,s)—(0,P’) and U(1,s)—(0,P"),

dP,<2P.(s)+2Z.
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